Huasong Wang, Linlin Liu, Mo Gou, Guian Huang, Chenglei Tian, Jiao Yang, Haiying Wang, Qin Xu, Guo_Liang Xu, Lin Liu. Roles of Tet2 in meiosis, fertility and reproductive aging[J]. Protein&Cell, 2021, 12(7): 578-585. doi: 10.1007/s13238-020-00805-8
Citation: Huasong Wang, Linlin Liu, Mo Gou, Guian Huang, Chenglei Tian, Jiao Yang, Haiying Wang, Qin Xu, Guo_Liang Xu, Lin Liu. Roles of Tet2 in meiosis, fertility and reproductive aging[J]. Protein&Cell, 2021, 12(7): 578-585. doi: 10.1007/s13238-020-00805-8

Roles of Tet2 in meiosis, fertility and reproductive aging

Funds: 

We thank Wei Deng for initial help in the experiments, and Lizhi Yi and Jiang Liu from Beijing Institute of Genomics for helping DNA methylation experiment. This work was supported by the National Natural Science Foundation of China (Grant Nos. 31571546 and 91749129).

More Information
  • Available Online: November 19, 2020
  • Published Date: July 07, 2021
  • [1]
    Cimmino L, Dolgalev I, Wang Y, Yoshimi A, Martin GH, Wang J, Ng V, Xia B, Witkowski MT, Mitchell-Flack M et al (2017) Restoration of TET2 function blocks aberrant self-renewal and leukemia progression. Cell 170(1079-1095):e1020
    [2]
    Dawlaty MM, Breiling A, Le T, Raddatz G, Barrasa MI, Cheng AW, Gao Q, Powell BE, Li Z, Xu M et al (2013) Combined deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible with postnatal development. Dev Cell 24:310-323
    [3]
    Delhommeau F, Dupont S, Della Valle V, James C, Trannoy S, Masse A, Kosmider O, Le Couedic JP, Robert F, Alberdi A et al (2009) Mutation in TET2 in myeloid cancers. N Engl J Med 360:2289-2301
    [4]
    Ferrone CK, Blydt-Hansen M, Rauh MJ (2020) Age-associated TET2 mutations:common drivers of myeloid dysfunction. Cancer and cardiovascular disease. Int J Mol Sci 21:626
    [5]
    Hon GC, Song CX, Du T, Jin F, Selvaraj S, Lee AY, Yen CA, Ye Z, Mao SQ, Wang BA et al (2014) 5mC oxidation by Tet2 modulates enhancer activity and timing of transcriptome reprogramming during differentiation. Mol Cell 56:286-297
    [6]
    Horvath S, Raj K (2018) DNA methylation-based biomarkers and the epigenetic clock theory of ageing. Nat Rev Genet 19:371-384
    [7]
    Huang G, Liu L, Wang H, Gou M, Gong P, Tian C, Deng W, Yang J, Zhou TT, Xu GL et al (2020) Tet1 deficiency leads to premature reproductive aging by reducing spermatogonia stem cells and germ cell differentiation. iScience 23:100908
    [8]
    Ko M, Huang Y, Jankowska AM, Pape UJ, Tahiliani M, Bandukwala HS, An J, Lamperti ED, Koh KP, Ganetzky R et al (2010) Impaired hydroxylation of 5-methylcytosine in myeloid cancers with mutant TET2. Nature 468:839-843
    [9]
    London N, Biggins S (2014) Signalling dynamics in the spindle checkpoint response. Nat Rev Mol Cell Biol 15:736-747
    [10]
    Lu F, Liu Y, Jiang L, Yamaguchi S, Zhang Y (2014) Role of Tet proteins in enhancer activity and telomere elongation. Genes Dev 28:2103-2119
    [11]
    Marangos P, Stevense M, Niaka K, Lagoudaki M, Nabti I, Jessberger R, Carroll J (2015) DNA damage-induced metaphase I arrest is mediated by the spindle assembly checkpoint and maternal age. Nat Commun 6:8706
    [12]
    Moran-Crusio K, Reavie L, Shih A, Abdel-Wahab O, Ndiaye-Lobry D, Lobry C, Figueroa ME, Vasanthakumar A, Patel J, Zhao X et al (2011) Tet2 loss leads to increased hematopoietic stem cell self-renewal and myeloid transformation. Cancer Cell 20:11-24
    [13]
    Saitou M, Miyauchi H (2016) Gametogenesis from Pluripotent Stem Cells. Cell Stem Cell 18:721-735
    [14]
    Wu X, Zhang Y (2017) TET-mediated active DNA demethylation:mechanism, function and beyond. Nat Rev Genet 18:517-534
    [15]
    Yamaguchi S, Hong K, Liu R, Shen L, Inoue A, Diep D, Zhang K, Zhang Y (2012) Tet1 controls meiosis by regulating meiotic gene expression. Nature 492:443-447
  • Related Articles

    [1]Qinchao Hu, Bin Zhang, Yaobin Jing, Shuai Ma, Lei Hu, Jingyi Li, Yandong Zheng, Zijuan Xin, Jianmin Peng, Si Wang, Bin Cheng, Jing Qu, Weiqi Zhang, Guang-Hui Liu, Songlin Wang. Single-nucleus transcriptomics uncovers a geroprotective role of YAP in primate gingival aging[J]. Protein&Cell, 2024, 15(8): 612-632. DOI: 10.1093/procel/pwae017
    [2]Shanshan Yang, Chengyu Liu, Mengmeng Jiang, Xiaoqian Liu, Lingling Geng, Yiyuan Zhang, Shuhui Sun, Kang Wang, Jian Yin, Shuai Ma, Si Wang, Juan Carlos Izpisua Belmonte, Weiqi Zhang, Jing Qu, Guang-Hui Liu. A single-nucleus transcriptomic atlas of primate liver aging uncovers the pro-senescence role of SREBP2 in hepatocytes[J]. Protein&Cell, 2024, 15(2): 98-120. DOI: 10.1093/procel/pwad039
    [3]Ying Jing, Yuesheng Zuo, Yang Yu, Liang Sun, Zhengrong Yu, Shuai Ma, Qian Zhao, Guoqiang Sun, Huifang Hu, Jingyi Li, Daoyuan Huang, Lixiao Liu, Jiaming Li, Zijuan Xin, Haoyan Huang, Juan Carlos Izpisua Belmonte, Weiqi Zhang, Si Wang, Jing Qu, Guang-Hui Liu. Single-nucleus profiling unveils a geroprotective role of the FOXO3 in primate skeletal muscle aging[J]. Protein&Cell, 2023, 14(7): 497-512. DOI: 10.1093/procel/pwac061
    [4]Yiyuan Zhang, Yandong Zheng, Si Wang, Yanling Fan, Yanxia Ye, Yaobin Jing, Zunpeng Liu, Shanshan Yang, Muzhao Xiong, Kuan Yang, Jinghao Hu, Shanshan Che, Qun Chu, Moshi Song, Guang-Hui Liu, Weiqi Zhang, Shuai Ma, Jing Qu. Single-nucleus transcriptomics reveals a gatekeeper role for FOXP1 in primate cardiac aging[J]. Protein&Cell, 2023, 14(4): 279-293. DOI: 10.1093/procel/pwac038
    [5]Boyi Cong, Qian Zhang, Xuetao Cao. The function and regulation of TET2 in innate immunity and inflammation[J]. Protein&Cell, 2021, 12(3): 165-173. DOI: 10.1007/s13238-020-00796-6
    [6]Lingling Geng, Zunpeng Liu, Weiqi Zhang, Wei Li, Zeming Wu, Wei Wang, Ruotong Ren, Yao Su, Peichang Wang, Liang Sun, Zhenyu Ju, Piu Chan, Moshi Song, Jing Qu, Guang-Hui Liu. Chemical screen identifies a geroprotective role of quercetin in premature aging[J]. Protein&Cell, 2019, 10(6): 417-435. DOI: 10.1007/s13238-018-0567-y
    [7]Qianlan Xu, Ruoyu Wang, A. R. Ghanam, Guanxiong Yan, Wei Miao, Xiaoyuan Song. The key role of CYC2 during meiosis in Tetrahymena thermophila[J]. Protein&Cell, 2016, 7(4): 236-249. DOI: 10.1007/s13238-016-0254-9
    [8]Ruijuan Sun, Heqi Cao, Xudong Zhu, Jun-Ping Liu, Erdan Dong. Current aging research in China[J]. Protein&Cell, 2015, 6(5): 314-321. DOI: 10.1007/s13238-015-0145-5
    [9]Mei Han, Hao Chang, Peng Zhang, Tao Chen, Yanhua Zhao, Yongdeng Zhang, Pingsheng Liu, Tao Xu, Pingyong Xu. C13C4.5/Spinster, an evolutionarily conserved protein that regulates fertility in C. elegans through a lysosome-mediated lipid metabolism process[J]. Protein&Cell, 2013, 4(5): 364-372. DOI: 10.1007/s13238-013-3015-z
    [10]Mingyou Li, Qian Shen, Foong Mei Wong, Hongyan Xu, Ni Hong, Lingbing Zeng, Lin Liu, Qiwei Wei, Yunhan Hong. Germ cell sex prior to meiosis in the rainbow trout[J]. Protein&Cell, 2011, 2(1): 48-54. DOI: 10.1007/s13238-011-1003-8
  • Other Related Supplements

  • Cited by

    Periodical cited type(12)

    1. Peipei Ren, Xiaomei Tong, Junjian Li, et al. CRL4DCAF13 E3 ubiquitin ligase targets MeCP2 for degradation to prevent DNA hypermethylation and ensure normal transcription in growing oocytes. Cellular and Molecular Life Sciences, 2024, 81(1) DOI:10.1007/s00018-024-05185-4
    2. Qiang Feng, Qirong Li, Yurui Hu, et al. TET1 overexpression affects cell proliferation and apoptosis in aging ovaries. Journal of Assisted Reproduction and Genetics, 2024. DOI:10.1007/s10815-024-03271-x
    3. Weiwei Huang, Xinyuan Li, Hongbo Yang, et al. The impact of maternal age on aneuploidy in oocytes: Reproductive consequences, molecular mechanisms, and future directions. Ageing Research Reviews, 2024, 97: 102292. DOI:10.1016/j.arr.2024.102292
    4. Bruna Paulsen, Sabrina Piechota, Ferran Barrachina, et al. Rescue in vitro maturation using ovarian support cells of human oocytes from conventional stimulation cycles yields oocytes with improved nuclear maturation and transcriptomic resemblance to in vivo matured oocytes. Journal of Assisted Reproduction and Genetics, 2024, 41(8): 2021. DOI:10.1007/s10815-024-03143-4
    5. Jing Wang, Xiguang Sun, Zongxing Yang, et al. Epigenetic regulation in premature ovarian failure: A literature review. Frontiers in Physiology, 2023, 13 DOI:10.3389/fphys.2022.998424
    6. Zhengmao Zhu, Wanxue Xu, Lin Liu. Ovarian aging: mechanisms and intervention strategies. Medical Review, 2023, 2(6): 590. DOI:10.1515/mr-2022-0031
    7. Mo Gou, Jie Li, Lizhi Yi, et al. Reprogramming of ovarian aging epigenome by resveratrol. PNAS Nexus, 2023, 2(2) DOI:10.1093/pnasnexus/pgac310
    8. Yuxiao Ma, Wenhui Wu, Yun Zhang, et al. The Synchronized Progression from Mitosis to Meiosis in Female Primordial Germ Cells between Layers and Broilers. Genes, 2023, 14(4): 781. DOI:10.3390/genes14040781
    9. Fan Chen, Ming-Guo Li, Zai-Dong Hua, et al. TET Family Members Are Integral to Porcine Oocyte Maturation and Parthenogenetic Pre-Implantation Embryogenesis. International Journal of Molecular Sciences, 2023, 24(15): 12455. DOI:10.3390/ijms241512455
    10. Sun-Kyung Lee, Seung Hyun Kim, Joohong Ahnn. Human Endogenous Retroviruses: Friends and Foes in Urology Clinics. International Neurourology Journal, 2022, 26(4): 275. DOI:10.5213/inj.2244284.142
    11. Linlin Liu, Huasong Wang, Guo_Liang Xu, et al. Tet1 Deficiency Leads to Premature Ovarian Failure. Frontiers in Cell and Developmental Biology, 2021, 9 DOI:10.3389/fcell.2021.644135
    12. Ashikh Seethy, Karthikeyan Pethusamy, Indranil Chattopadhyay, et al. TETology: Epigenetic Mastermind in Action. Applied Biochemistry and Biotechnology, 2021, 193(6): 1701. DOI:10.1007/s12010-021-03537-5

    Other cited types(0)

Catalog

    Article Metrics

    Article views (1095) PDF downloads (132) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return