Key Lab of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
Funds:
We are grateful to the Supercomputing Center of Chinese Academy of Science (CAS) for the supercomputing resource for demographic history simulation. Studies in our laboratory were supported by grants from the National Natural Science Foundation of China (Grant No. 31230011) and Knowledge Innovation Program of Chinese Academy of Sciences (KSCX2-EW-Z-4).
One of the main topics in population genetics is identification of adaptive selection among populations. For this purpose, population history should be correctly inferred to evaluate the effect of random drift and exclude it in selection identification. With the rapid progress in genomics in the past decade, vast genomescale variations are available for population genetic analysis, which however requires more sophisticated models to infer species' demographic history and robust methods to detect local adaptation. Here we aim to review what have been achieved in the fields of demographic modeling and selection detection. We summarize their rationales, implementations, and some classical applications. We also propose that some widely-used methods can be improved in both theoretical and practical aspects in near future.